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Introduction

Problem

min
x∈X

f (x).

f (x) is convex differentiable, X is closed and convex.

We want to know

Iterations to reach f (xr)− f ∗ ≤ ε

Specially, we investigate algorithms
with linear convergence

f (xr+1)−f ∗ ≤ (1−1

c
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Introduction

Motivation

Dual problem of support vector classification is

min
α

1

2
w>w − 1Tα

subject to w = Eα, 0 ≤ αi ≤ C , i = 1, . . . , l ,

E =
[
y1z1, . . . , ylzl

]
is the data matrix, (yi , zi):

label-instance pair, and 1 is the vector of ones

w>w/2 is strongly convex in w, but Hessian may
not be strongly convex in α

Coordinate descent method is commonly used, but
complexity not very clear
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Introduction

Difficulties

For some convex but not non-strongly convex problems,

Asymptotic Linear Convergence (Luo and Tseng, 1993)

∃r0 such that f (xr+1)−f ∗ ≤ (1−1

c
)(f (xr)−f ∗), ∀r ≥ r0.

Usually we only know the existence of r0 but not its
relation to problem parameters.
To estimate iteration numbers, we hope to have

Global Linear Convergence

f (xr+1)− f ∗ ≤ (1− 1

c
)(f (xr)− f ∗), ∀r .
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Introduction

Difficulties (Cont’d)

We also hope to know more about the convergence
rate

That is, how the rate is related to the data

Properties of the data include range of feature
values, number of instances, number of features etc.
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Introduction

Past Studies

• We are interested in deterministic algorithms (e.g.,
cyclic coordinate descent)

• Interestingly, more studies have been done on the
complexity of randomized coordinate descent:

Linear convergence for strongly convex f (·)
(Nesterov, 2012; Richtárik and Takáč, 2014;
Tappenden et al., 2013)
Sub-linear convergence for non-strongly convex
f (·)
(Shalev-Shwartz and Tewari, 2009; Nesterov,
2012; Shalev-Shwartz and Zhang, 2013a,b)
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Introduction

Past Studies (Cont’d)

• Past work on complexity of cyclic coordinate descent:

Linear convergence for l2-loss SVM (Chang et al.,
2008); smooth and strongly convex f (·) (Beck
and Tetruashvili, 2013)
Sub-linear convergence for non-strongly convex
f (·) (Tseng and Yun, 2009; Saha and Tewari,
2013)
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Feasible descent methods and linear-convergence proof

Framework: Feasible Descent Methods

A sequence {xr} is generated by a feasible descent
method if for all iteration index r , {xr} satisfies

xr+1 = [xr − ωr∇f (xr) + er ]+X ,

‖er‖ ≤ β‖xr − xr+1‖,
f (xr)− f (xr+1) ≥ γ‖xr − xr+1‖2,

where infr ωr > 0, β > 0, and γ > 0.

Coordinate descent is a special case
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Feasible descent methods and linear-convergence proof

Examples of Feasible Descent Methods for
Machine Learning

Coordinate descent methods for dual Support
Vector Classification (SVC)

Coordinate descent methods for dual Support
Vector Regression (SVR)

Inexact coordinate descent for primal SVC

Inexact: one-variable sub-problem approximately
solved

Gauss-Seidel method for solving linear systems
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Feasible descent methods and linear-convergence proof

Projected Gradient

We need the following tools

Definition (Convex Projection)

[y]+X ≡ arg min
x∈X
‖x− y‖.

Definition (Projected gradient)

∇+f (x) ≡ x− [x−∇f (x)]+X .

Lemma (Optimality condition)

∇+f (x∗) = 0 ⇔ x∗ is optimal.
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Feasible descent methods and linear-convergence proof

Existing Techniques to Prove Asymptotic
Linear Convergence

In Luo and Tseng (1993), they prove the following error
bound

min
x∗∈X ∗

‖xr − x∗‖ ≤ κ‖∇+f (xr)‖, ∀r ≥ r0,

where X ∗ is the set of optimal solutions

We call this a local error bound because of r0.

We aim at proving a global error bound and knowing
more about κ
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Feasible descent methods and linear-convergence proof

Existing Techniques to Prove Asymptotic
Linear Convergence (Cont’d)

• In a sense you can also say that a local error bound is
global. If X is compact, there exists κ̄ such that

min
x∗∈X ∗

‖xr − x∗‖ ≤ κ̄‖∇+f (xr)‖, ∀r ≥ 0

• Based on the existence of such bounds, linear
convergence has recently been established (e.g., Hong
et al., 2014; Kadkhodaie et al., 2014) for problems not
covered in (Luo and Tseng, 1993)

• However, we are interested in rate analysis here, so we
must know more about κ
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Feasible descent methods and linear-convergence proof

Sufficient Condition for Global Linear
Convergence

We proved that feasible descent methods have global
linear convergence if the following condition holds.

Global Error Bound from the Beginning

‖x− x̄‖ ≤ κ‖∇+f (x)‖,

for all x satisfying

x ∈ X and f (x)− f ∗ ≤ M ,

where x̄ is the nearest optimum to x, f ∗ is the optimal
value, and M ≡ f (x0)− f ∗. We will check details of κ
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Feasible descent methods and linear-convergence proof

Who Has A Global Error Bound from the
Beginning?

Assumption (Strongly Convex)

f (x) is σ strongly convex and ∇f is ρ Lipschitz
continuous.

A global error bound has been proved in Pang (1987)

However, recall our goal is to study non-strongly convex
problems such as SVM dual
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Feasible descent methods and linear-convergence proof

Who Has A Global Error Bound from the
Beginning? (Cont’d)

Assumption (Strongly Convex Composition)

X is a polyhedral set {x | Ax ≤ d} and

f (x) = g(Ex) + b>x, (1)

where g(·) is σg strongly convex and ∇f is ρ Lipschitz
continuous.

Our main result: global error bound for (1)

Then we can prove global linear convergence of feasible
descent methods for (1)
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Feasible descent methods and linear-convergence proof

Key Ideas in Our Proof

Optimal solution set is a polyhedral set

Ex∗ = t∗, b>x∗ = s∗, and Ax∗ ≤ d.

Using Hoffman’s bound (Hoffman, 1952) to bound
the distance between x and a polyhedron. We
proved a modified version from Li (1994)

‖x− x̄‖ ≤ θ
(
A,

(
E
b>

)) ∥∥∥∥ E (x− x̄)

b>(x− x̄)

∥∥∥∥ ,
where θ

(
A,

(
E
b>

))
is a constant related to A, E , b.

Finally, we bound ‖E (x− x̄)‖2 and (b>(x− x̄))2
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Rate of the linear convergence

The Error Bound Constants

We proved
‖x− x̄‖ ≤ κ‖∇+f (x)‖

with

κ = θ2(1 + ρ)(
1 + 2‖∇g(t∗)‖2

σg
+ 4M) + 2θ‖∇f (x̄)‖,

Recall that
f (x) = g(Ex) + b>x,

where g(·) is σg strongly convex and ∇f is ρ Lipschitz

If X = Rl or b = 0, κ can be simplified to

κ = θ2
1 + ρ

σg
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Rate of the linear convergence

The Convergence Rate

With an error bound, the feasible descent method

xr+1 = [xr − ωr∇f (xr) + er ]+X ,

‖er‖ ≤ β‖xr − xr+1‖,
f (xr)− f (xr+1) ≥ γ‖xr − xr+1‖2,

converges linearly with

f (xr+1)− f ∗ ≤ φ

φ + γ
(f (xr)− f ∗), ∀r ≥ 0,

where

φ = (ρ+
1 + β

ω
)(1+κ

1 + β

ω
), and ω ≡ min(1, inf

r
ωr).
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Rate of the linear convergence

Examples of the Error Bound Constant

Dual problem of l1-loss support vector classification

min
α

1

2
w>w − 1Tα

subject to w = Eα, 0 ≤ αi ≤ C , i = 1, . . . , l ,

E =
[
y1z1, . . . , ylzl

]
is the data matrix, (yi , zi):

label-instance pair, and 1 is the vector of ones

If coordinate descent methods are used and each
instance is normalized to unit length,

κ = O(ρθ2Cl),

where l is the number of training instances.
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Rate of the linear convergence

Examples of the Convergence Rate

For dual problem of l1-loss support vector classification,
the cyclic coordinate descent method has global linear
convergence.

f (xr+1)− f ∗ ≤ (1− 1

2φ + 1
)(f (xr)− f ∗), ∀r ,

where
φ = O(lρ2κ) = O(ρ3θ2Cl2).
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Discussions and conclusions
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Discussions and conclusions

Conclusions

• For some non-strongly convex functions, we provide
rate analysis of linear convergence for feasible descent
methods
• The key idea is to prove an error bound between any

point and the optimal solution set
• Our result enables the global linear convergence of

optimization methods for some machine learning
problems
• Details of the proof can be found at: P.-W. Wang and

C.-J. Lin. Iteration complexity of feasible descent
methods for convex optimization. Journal of Machine
Learning Research, 2014.
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