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Problem

min f(x).

f(x) is convex differentiable, X is closed and convex.

We want to know
@ lterations to reach f(x") — f* < e

Specially, we investigate algorithms 1°°§’\§
with linear convergence

A < D)) ) v e

Linearly 1/e
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Motivation

@ Dual problem of support vector classification is

1
min §wTw 17

subjectto w=FEa, 0< ;< C,i=1,...

Y

E = [yiz1,...,yz)] is the data matrix, (y;,z):
label-instance pair, and 1 is the vector of ones

@ w'w/2 is strongly convex in w, but Hessian may
not be strongly convex in

@ Coordinate descent method is commonly used, but
complexity not very clear
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Difficulties

For some convex but not non-strongly convex problems,

Asymptotic Linear Convergence (Luo and Tseng, 1993)

Jry such that F(x )~ f* < (1—%)(f(xr)—f*), Vr > ro

Usually we only know the existence of ry but not its
relation to problem parameters.
To estimate iteration numbers, we hope to have

Global Linear Convergence

) — < (L= ()~ ), o
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Difficulties (Cont'd)

@ We also hope to know more about the convergence
rate

@ That is, how the rate is related to the data

@ Properties of the data include range of feature
values, number of instances, number of features etc.

Chih-Jen Lin (National Taiwan Univ.) Complexity of Feasible Descent Methods

7/ 26



Past Studies

e We are interested in deterministic algorithms (e.g.,
cyclic coordinate descent)

e Interestingly, more studies have been done on the
complexity of randomized coordinate descent:

o Linear convergence for strongly convex f(-)
(Nesterov, 2012; Richtarik and Tak&¢, 2014,
Tappenden et al., 2013)

e Sub-linear convergence for non-strongly convex
f(-)

(Shalev-Shwartz and Tewari, 2009; Nesterov,
2012; Shalev-Shwartz and Zhang, 2013a,b)
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Past Studies (Cont'd)

e Past work on complexity of cyclic coordinate descent:
o Linear convergence for 12-loss SVM (Chang et al.,
2008); smooth and strongly convex f(-) (Beck
and Tetruashvili, 2013)
o Sub-linear convergence for non-strongly convex
f(-) (Tseng and Yun, 2009; Saha and Tewari,
2013)
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_ Feasible descent methods and linear-convergence proof

@ Feasible descent methods and linear-convergence
proof
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_ Feasible descent methods and linear-convergence proof
Framework: Feasible Descent Methods

A sequence {x"} is generated by a feasible descent
method if for all iteration index r, {x"} satisfies

X =[x"—w,VFf(x") + e,
le"]| < BlIx" — x|,
Fx) — Fx) = 9 — xR

where inf,w, >0, 8 >0, and v > 0.

Coordinate descent is a special case
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_ Feasible descent methods and linear-convergence proof
Examples of Feasible Descent Methods for
Machine Learning

@ Coordinate descent methods for dual Support
Vector Classification (SVC)

@ Coordinate descent methods for dual Support
Vector Regression (SVR)

@ Inexact coordinate descent for primal SVC

Inexact: one-variable sub-problem approximately
solved

@ Gauss-Seidel method for solving linear systems
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_ Feasible descent methods and linear-convergence proof
Projected Gradient

We need the following tools

Definition (Convex Projection)

T = ' —
[y]% = argmin [|x — y[|. Wik

Definition (Projected gradient)
V(x) =x— [x — VF(x)]3.

o o [z — Vf(x)]}
Lemma (Optimality condition)
x —Vf(z)

Vif(x*) =0 & x* is optimal.
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_ Feasible descent methods and linear-convergence proof
Existing Techniques to Prove Asymptotic
Linear Convergence

In Luo and Tseng (1993), they prove the following error
bound

X' = x| < K[|V, V=,

min
x*eX*
where X'* is the set of optimal solutions

We call this a local error bound because of ry.

We aim at proving a global error bound and knowing
more about &
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_ Feasible descent methods and linear-convergence proof
Existing Techniques to Prove Asymptotic
Linear Convergence (Cont'd)

e In a sense you can also say that a local error bound is
global. If X' is compact, there exists K such that

min [|x" —x*|| < E|VTF(x")|, Vr>0
x*eX*

e Based on the existence of such bounds, linear
convergence has recently been established (e.g., Hong
et al., 2014; Kadkhodaie et al., 2014) for problems not
covered in (Luo and Tseng, 1993)

e However, we are interested in rate analysis here, so we
must know more about
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_ Feasible descent methods and linear-convergence proof
Sufficient Condition for Global Linear
Convergence

We proved that feasible descent methods have global
linear convergence if the following condition holds.

Global Error Bound from the Beginning
Ix — x| < K[V,
for all x satisfying
x € X and f(x) — " < M,

where X is the nearest optimum to x, f* is the optimal
value, and M = f(x°) — f*. We will check details of &
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_ Feasible descent methods and linear-convergence proof
Who Has A Global Error Bound from the
Beginning?

Assumption (Strongly Convex)

f(x) is o strongly convex and Vf is p Lipschitz
continuous.

A global error bound has been proved in Pang (1987)

However, recall our goal is to study non-strongly convex
problems such as SVM dual
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Who Has A Global Error Bound from the
Beginning? (Cont'd)

Assumption (Strongly Convex Composition)
X is a polyhedral set {x | Ax < d} and

f(x) = g(Ex) + b'x, (1)

where g(-) is o4 strongly convex and Vf is p Lipschitz
continuous.

Our main result: global error bound for (1)

Then we can prove global linear convergence of feasible
descent methods for (1)
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_ Feasible descent methods and linear-convergence proof
Key ldeas in Our Proof

e Optimal solution set is a polyhedral set
Ex* =t*, b'x* =s* and Ax* <d.

@ Using Hoffman’s bound (Hoffman, 1952) to bound
the distance between x and a polyhedron. We
proved a modified version from Li (1994)

E(x — X)
b'(x —x)

Y

=%l <0 (A (£))

where 6 (A, (bEr )) is a constant related to A, E, b.
o Finally, we bound ||E(x — %)||? and (b' (x — X))?
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@ Rate of the linear convergence
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_ Rate of the linear convergence
The Error Bound Constants

We proved
Ix —x|| < K[| VTF(x)]]
with
1+ 2||Vg(t)|? _
/ﬁ::¢92(1+p)( Hag( )| +4M) + 20||V£(x)],
g
Recall that

f(x) = g(Ex) +b'x,
where g(-) is o, strongly convex and Vf is p Lipschitz
If ¥ =R/ or b =0, x can be simplified to

62921+p
Og
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_ Rate of the linear convergence
The Convergence Rate

With an error bound, the feasible descent method
=[x — w,VF(x") + e'ly,
le"]| < Bllx"— x|,
F(x") — F(x1) > 7[]x" — x"*1%,

converges linearly with

Fx) — < — 2 (F(x")— £, Vr>o0,
(- 2 L) - 1), e
where
1
¢ = (p+ﬁ( +6, and w = min(1,infw,).
w r
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_ Rate of the linear convergence
Examples of the Error Bound Constant

Dual problem of |1-loss support vector classification

min -ww-—1"«
(0%

subjectto w=Ea, 0< ;< C,i=1,...,1,
E = [yiz1,...,yz)] is the data matrix, (y;,z;):
label-instance pair, and 1 is the vector of ones

If coordinate descent methods are used and each
instance is normalized to unit length,

k= O(pf*Cl),

where [ is the number of training instances.
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_ Rate of the linear convergence
Examples of the Convergence Rate

For dual problem of I1-loss support vector classification,
the cyclic coordinate descent method has global linear
convergence.

1
26+ 1

FxY) — F < (1— )(F(x") = F7), vr,

where

¢ = O(Ip*r) = O(p*6*CP?).
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@ Discussions and conclusions
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Conclusions

e For some non-strongly convex functions, we provide
rate analysis of linear convergence for feasible descent
methods

e The key idea is to prove an error bound between any
point and the optimal solution set

e Our result enables the global linear convergence of
optimization methods for some machine learning
problems

e Details of the proof can be found at: P.-W. Wang and
C.-J. Lin. lteration complexity of feasible descent
methods for convex optimization. Journal of Machine
Learning Research, 2014.
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