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The Settings
Consider the unconstrained optimization problem

minimize
w∈Rn

f (w), (1)

where f (w) is σ strongly convex and ρ smooth;
1

2
∆⊤(σI )∆ ≤ f (w +∆)− f (w)−∇f (w)⊤∆ ≤ 1

2
∆⊤(ρI )∆.
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These assumptions give upper and lower bounds for the
local second-order Taylor expansion.

Many first- and second-order algorithms generate iterates by solving
local approximations. 2



Core Question
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Core Question
Many algorithms use past information to refine current approximation.

But current approximate may be biased since Hessian is changing...
So...

Should we spend time making more precise local approximation
or should we move quickly because the Hessian is changing?
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There is a trade-off in how
to use the past information and gradients.

Core Question: How to efficiently reuse past information?
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Overview
We present a general framework to reuse previous directions by solving

minimize
t ∈ Rm

f (w + Pt),

in which

P =
[
p1, . . . ,pm

]
∈ Rn×m are the basis of past directions.

Each step, we find a approximate solutions in the span of past directions.

We proved that under certain stopping conditions for subproblems,
the method converges globally with the optimal first-order linear rate,
and locally with a quadratic rate.

In the Empirical Risk Minimization problem (ERM),
outperforms the state-of-the-art first- and second-order methods in the
number of data accesses and is competitive in the running time.

Number of data accesses: # scans through the data, important when
data is stored distributedly or cannot fit in the memory
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Conjugate Gradient Method
Solve the quadratic problem

minimize
w

f (w) ≡ 1

2
w⊤Aw − b⊤w.

Equivalent to our framework by solving

minimize
t ∈ Rk

f (wk + Pt),

in which CG gives exact solution t on conjugate basis P ,

pk = gk −
∑
i<k

(g⊤
k Api

p⊤
i Api

)
pi , where gk = −∇f (wk ).

Optimal first-order linear rate on positive-definite quadratic problems

Only requires Hessian-vector product ∇2f (·)v in the algorithm

No guarantee on nonlinear cases
6



Nesterov’s Accelerated Method
Constant step-size scheme on alternating sequences {wk} and {sk}

sk = wk −
(

2√
κ+ 1

)
(wk − wk−1),

wk+1 = sk −∇f (sk ),

where κ =
ρ

σ
is the condition number.

In Nesterov’s accelerated method, we alternatively use the two
directions

p1 = wk − wk−1, p2 = ∇f (sk ),
which is similar to approximately solving the subproblem

minimize
t ∈ R2

f (wk + Pt),

on the above pi , i = 1, 2.

Optimal first-order linear rate for the first-order settings

Not strictly decreasing 7



Quasi-Newton Method
Main idea: approximate the Hessian by past gradients
For example, the BFGS method solves

wk+1 = arg min
w

1

2
w⊤Bkw +∇f (wk )

⊤w

by using matrix inversion lemma to maintain the inverse

B−1
k = (I − µk−1uk−1s⊤k−1)B

−1
k−1(I − µk−1uk−1s⊤k−1) + µk−1sk−1s⊤k−1,

µk−1 ≡
1

u⊤
k−1sk−1

, sk−1 ≡ wk − wk−1, uk−1 ≡ ∇f (wk )−∇f (wk−1).

If we expand sk−1 and uk−1 and let B0 = λI , we can see that

wk+1 is on the span of past gradients.

Thus, BFGS can be seen as approximately solving the subproblem

minimize
t ∈ Rk

f (wk + Pt),

in which
pi = ∇f (wi), ∀i = 1, . . . , k . 8



Summary

Conjugate Gradient Method
- Give exact solution for mint f (w + Pt) for quadratic problems

- Solve mint f (w + Pt), where P is the conjugate basis

Nesterov’s Accelerated Method
- Interpolate between past direction and gradient

- Solve mint f (w + Pt), where P = [wk − wk−1, ∇f (sk )]

Quasi-Newton Method
- Approximate the Hessian with past gradients

- Solve mint f (w + Pt), where P = [∇f (wi)], for all i = 0, . . . , k

All above methods involve reusing past information/gradients.

Why not reuse the past gradients directly?
9
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CommDir: Reuse past gradients whenever we can!
In each iteration, we solve the subproblem

minimize
t ∈ Rm

f (w + Pt),

in which P ∈ Rn×m is the orthogonal basis of [∇f (wi)], i = 0, . . . , k .

Each step, we find a approximate solutions in the span of past gradients.
Orthogonalized basis P: easier to detect new expansion on ∇f (wk ).

Alg. (Common-directions Method)
P = [∇f (w0)/∥∇f (w0)∥]
For k -th iteration do:

- (Approximately) solve subproblem
mint f (wk + Pt)
to obtain wk+1 = wk + Pt

- Let p = (I − PP⊤)∇f (wk+1)

- If p ̸= 0 then P = [P ; p/∥p∥]

If the # of iterations is small,
then # of variables in the
subproblem is also small

Solve the subproblem by
(multiple or single iters of)
Newton method on t with
backtracking line search 10



If subproblem solved exactly...

Theorem
When the subproblem mint f (wk + Pt) is solved exactly,
CommDir reaches the optimum in n iterations, where n = dim(w).

Equivalent guarantee to conjugate gradient method on quadratic f ,
but also works on non-quadratic problems.
Proof.
When subproblem solved exactly, the next gradient direction is
orthogonal to all previous directions (otherwise projected gradient is
nonzero and the subproblem is not solved exactly). Thus, wk + Pt
covers the optimal solution in n iterations.

Just ideal case. What if the subproblem is solved approximately?
11



When subproblem solved approximately...

Theorem
Under a proper inner stopping condition,
CommDir converges globally in an optimal first-order linear rate.
That is, f (wk )− f ∗ ≤ ϵ in O(

√
κ log(1/ϵ)) iterations, where κ = ρ

σ .

Subproblem by Newton method on t w/ backtracking line search
Theorem
The line-search procedure terminates in ⌈logβ(βσ/(ρ+ λ))⌉ steps,
where λ is the threshold and β is the shrinking parameter.

Even if we only do a single iteration of the inner loop
Theorem
CommDir with a single inner iteration converges Q-linearly.
In addition, if the Hessian is Lipschitz continuous,
CommDir admits local quadratic convergence.

Optimal guarantees in first- and second-order methods! 12



Multiple Inner Iterations v.s. Single Inner Iteration
Experiment suggests that for ERM problems, there is not much
difference between using multiple and single inner iterations.
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Application: CommDir For Empirical Risk Minimization
Despite we only have m variables in the subproblem

minimize
t ∈ Rm

f (w + Pt),

constructing the coefficients for t might be expensive. Need to
consider special structure in problems.
Example: Empirical Risk Minimization (SVMs and logistic regression):

minimize
w

f (w), where f (w) ≡ 1

2
w⊤w + C

l∑
i=1

ξ(yi ; w⊤xi).

The gradient and Hessian have special structure

∇f (w) = w +X⊤vw ∇tf (w + Pt) = PTw + (XP)⊤vw

∇2f (w) = I +X⊤DwX ∇2
t f (w + Pt) = I + (XP)⊤Dw(XP)

Each iteration, we will add at most one direction into P

X
(
P ,pm+1

)
=

(
XP ,Xpm+1

)
so we only need to calculate Xpm+1 to maintain the new XP . 14



CommDir for ERM Complexity

By proper bookkeeping, the cost per iteration for CommDir is

O( lm2 +mn + #non-zeros in data︸ ︷︷ ︸
construct gradient and Hessian

+ m3︸︷︷︸
Newton on subproblem

),

where l is # of data, n is dim(w), and m is the # of stored directions.

Comparable to state-of-the-art methods if m small,
and we usually reaches enough precision in 30 iterations

(m ≤ 30).

15



Experiment: Objective v.s. Data Pass (C = 10−3)
CommDir outperform L-BFGS method w/ 30 past directions, BFGS,
truncated Newton method, and Accelerated Gradient method in term
of data pass.

(a) webspam
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Experiment: Objective v.s. Time (C = 10−3)
CommDir is also competitive to L-BFGS method w/ 30 past directions,
BFGS, truncated Newton method, and Accelerated Gradient method in
term of training time.

(a) webspam
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Summary
We presented the common-directions method, a framework of reusing
the past directions.

1. It collects the basis of past directions in P and solve subproblem

minimize
t ∈ Rm

f (w + Pt)

2. Under different stopping conditions,
it admits optimal first-order linear convergence and local quadratic
convergence with Liptschitz Hessian.

3. With special structures, e.g. ERM, it can be solved efficiently.

4. Experiments suggest CommDir outperforms BFGS, L-BFGS (with
m = 30), Nesterov’s accelerated gradient method, and truncated
Newton method in number of data access, and is competitive in terms
of running time.

Now the boring/exciting part: Theoretical Analysis!
20
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Convergence Overview

Common-directions method w/ single inner iteration
- Q-linear convergence

- Local quadratic convergence if Hessian is Lipschitz continuous

Common-directions method w/ multiple inner iterations
- All above properties

- Plus optimal first-order linear rate in O(
√
κ log(1/ϵ))!

I will just talk about the most interesting part:

Strictly decreasing algorithm with optimal first-order linear rate by
reusing past directions.

21



Proof Sketch: Estimation Sequence
Technique from Nesterov’s 03 book.
For all k ≥ 0, recursively define the estimation sequence {ϕk (w)} as

ϕk+1(w) ≡ (1−α)ϕk (w)+α
(
f (wk ) +∇f (wk )

⊤(w − wk ) +
σ

2
∥w − wk∥2

)
︸ ︷︷ ︸

quadratic lower bound

,

with α ≡
√

σ

ρ︸︷︷︸
rate

∈ (0, 1], and ϕ0(w) =
σ

2
∥w − w0∥2 + f (w0)︸ ︷︷ ︸

initial estimate

.

−2 0 2 4 6
−0.5

0

0.5

1

1.5
objective

σ lower bound

Nesterov’s accelerated gradient: generate from estimation sequence.

Key idea:
We do not generate wk+1 from the estimation sequence.
Instead, we construct estimation sequence on existing wk and
use it to determine the stopping condition of inner iterations!
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Proof Sketch: Inner Stopping Condition
Key idea:

1. Construct estimation sequence ϕk+1 on existing wk

2. Use solution vk+1 of estimation sequence ϕk+1(·) for
stopping condition for subproblem mint f (wk + Pt).

If the iterate w = wk + Pt on subproblem mint f (wk + Pt) satisfies

stopping cond.

{
∇f (w)⊤(vk+1 − w) + σ

2 ∥vk+1 − w∥2 ≥ 0 (a)
f (w) ≤ f (wk − 1

ρ∇f (wk )) (b)

=⇒ We are doing better than estimation sequence
=⇒ Optimal first-order rate!

We prove the inner iterations always generate a w satisfying the
stopping condition in finite time because we cover the span of vk+1.
=⇒ Optimal first-order linear rate.

Reusing previous direction properly is enough for optimal rate!
Interpolation is not required. Strictly decreasing!
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Conclusion
In this work, we present the common-directions method,
a framework of reusing the past directions.

1. It builds a basis P from past gradients, and solves the subproblem

minimize
t ∈ Rm

f (w + Pt)

2. We got Q-linear convergence and local quadratic convergence (with
Lipschitz Hessian) for CommDir with single inner iteration. We got
optimal first-order linear convergence for CommDir with multiple inner
iterations while being strictly decreasing.

3. We apply CommDir on the empirical risk minimization problems and
exploit the structure to make it efficient.

4. Experiments show that it outperforms state-of-the-art first- and
second-order optimization methods in the number of data access, and
it is also competitive in running time.

24



Extension: Limited Common-directions Method

What if we limit the length of past directions in the subproblem?
In that case, what kind of directions should we preserve?

What is the convergence guarantee?

Same idea from BFGS to L-BFGS!

We investigate the problem in

C.-P. Lee, P.-W. Wang, W. Chen, and C.-J. Lin.
Limited-memory common-directions method for distributed optimization
and its application on empirical risk minimization.
SIAM International Conference on Data Mining, 2017

We found that preserving wk −wk−1 is better than preserving ∇f (wk )
and proved linear convergence for the scenario.

25



Thanks for Listening
Please see the full paper at

P.-W. Wang, C.-P. Lee, and C.-J. Lin.
The Common-directions Method for Regularized
Empirical Risk Minimization.
Technical report, 2016.
http://www.csie.ntu.edu.tw/~cjlin/papers/nheavy/
commdir.pdf

Questions?

26
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