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Who here has used or ?
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CVX is
great!

x
∥Ax − b∥22 + λ∥x∥1

!"
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CVX is
great!

x
∥Ax − b∥22 + λ∥x∥1 + λ∥x∥2
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But
it
is
slow
when
it
scales
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100 variables 0.01 seconds
1000 variables 0.9 seconds

10000 variables 800 seconds

Well . . .
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Why
is slow?

Convert problem to conic form
- linear, quadratic, or semidefinite programs

- In this case, Lasso is transformed to a quadratic program

Solve with conic solver
- Primal-dual interior point method implemented in SCS and ECOS

No one would solve Lasso that way!
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Contributions

Make as good as specialized solvers (almost)!

Before After
100 variables 0.01 seconds 0.01 seconds

1000 variables 0.9 seconds ⇒ 0.05 seconds
10000 variables 800 seconds 2 seconds

Same exact modeling language with flexibility (i.e., can still add
additional regularizers and constraints with one line of code)

But faster!
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Outline
and
Contribution

Solving problems without conic transform
- By proximal operators and epigraph projections

Collection of epigraph projection algorithms
- Cover many common convex functions

Experiments
- Order of magnitude faster than other solvers

Full framework available at
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http://epopt.io


Background: Proximal
Methods
Proximal operator is defined by

λf (v) =
x

1

2
∥x − v∥2 + λf (x ).

A generalization of projection

Many method, e.g. proximal gradient method, use these operators

Key feature:
- Simple closed-form expression for many functions

Example: proximal operator of L1 norm

λ∥·∥1 =

{
0 if xi ≤ λ

(xi)(|xi |− λ) otherwise
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Why
hard . . .

Why is it hard to solve problem with “fast” methods? (e.g.
proximal methods)

express very general composition of function and constraints
using a framework called Disciplined
Convex
Programming
DCP involves composition of “simple” convex functions, called atoms,
to create complex functions

- E.g. ∥x∥1, ∥x∥22, (0, x ) are all atoms.

No “easy” proximal operators for general DCP functions
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Example: Robust
SVM
Robust SVM separates points with uncertainty regression

θ

λ

2
∥θ∥22 +

m∑

i=1

{0, 1− yi · θT zi}

We have proximal operators for (0, ·), ∥ · ∥1, and linear functions,
but we don’t have the proximal for {0, 1− yi · θT zi + ∥PTθ∥1}
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Our
approach

We present an algorithm that can convert any DCP into the form

f (x ) ≡
n∑

i=1

gi(x ), Ax = b,

where gi(x ) is a DCP atom

gi(x ) = Simple functions,

or the indicator of an epigraph set of a DCP atom

gi(x ) = I{h(x ) ≤ x1}.

We will be able to solve the DCP problem given the proximal of gi(x )
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Example: Robust
SVM to
proximal
and
epigraph

θ

λ

2
∥θ∥22 +

m∑

i=1

{0, 1− yi · θT zi + ∥PTθ∥1}

The problem is equivalent to

x={θ,t ,p,q}
g1(x ) + g2(x ),

g1(x ) =
λ

2
∥θ∥22

g2(x ) =
m∑

i=1

{0, 1− yi · θT xi + ∥PT θ∥1}
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Example: Robust
SVM to
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and
epigraph

θ

λ

2
∥θ∥22 +

m∑

i=1

{0, 1− yi · θT zi + ∥PTθ∥1}

The problem is equivalent to

x={θ,t ,p,q}
g1(x ) + g2(x ) + g3(x ),

g1(x ) =
λ

2
∥θ∥22

g2(x ) =
m∑

i=1

{0, 1− yi · θT xi + q}

g3(x ) = I(∥PTθ∥1 ≤ q)
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Example: Robust
SVM to
proximal
and
epigraph

θ

λ

2
∥θ∥22 +

m∑

i=1

{0, 1− yi · θT zi + ∥PTθ∥1}.

The problem is equivalent to

x={θ,t ,p,q}
g1(x ) + g2(x ) + g3(x ),

g1(x ) =
λ

2
∥θ∥22

g2(x ) =
m∑

i=1

{0, ti} ti = 1− yi · θT xi + q

g3(x ) = I(∥p∥1 ≤ q) p = PTθ

Consist of only DCP atoms, epigraph indicators, and linear equalities.
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Solving
DCP
We proved that any DCP problem can be converted to the form

x
f (x ) ≡

x

n∑

i=1

gi(x ), Ax = b,

which can be solved by operator splitting (e.g. ADMM, DR), as long as
we have proximal operators for the DCP atoms and epigraph indicators

x k+1
i ← gi (u

k
i − z k )

z k+1 ←
[

I AT

A 0

]−1 [ 1
N

∑N
i=1(x

k+1
i + uk )
b

]

uk+1
i ← uk

i + x k+1
i − z k+1
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Epigraph
projection
Proximal of epigraph indicator = projection on the epigraph set

x ,t
∥(x , t)− (v , s)∥2, f (x ) ≤ t
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Contribution: Epigraph
projection
Algorithms

In this work, we design a wide class of epigraph projection algorithms
for DCP atoms, for example,

f (x ) =
∑

i

x 2
i by exact method

f (x ) =
∑

i

(xi) by primal-dual Newton method

f (x ) = −
∑

i

(xi) by implicit Newton method

f (x ) =
∑

i

|xi | by sum of max solver

. . . . . .
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Solving
Epigraph
Projections

x ,t
∥(x , t)− (v , s)∥2

f (x ) ≤ t

!"

λ≥0
D(λ),

in which D(λ) can be construct by the proximal operator

A 1D optimization problem, can always be solved via bisection, but is
time-consuming (each iteration of bisection requires a new
operation)
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Epigraph
Projection: Closed-form
method

For example, for the atom

f (x ) = ∥x∥22,

the dual epigraph projection problem has a closed-form solution
satisfying

dD(λ)

dλ
= (

1

2
λ)(1 + 2λ)2 − ∥v∥22 = 0

This equation can be solved by cubic formula or Kerner method

While many proximal operators have closed-form solution, not many
epigraph projections have them
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Epigraph
Projection: Primal-dual
Newton
method

When the domain of the atom is unconstrained, e.g.,

f (x ) =
∑

i

(xi),

we can exploit the KKT system of the epigraph problem

r(x , t ,λ) =

⎡

⎣
x − v + λ∇x f (x )

t − s − λ
f (x )− t

⎤

⎦ = 0

and derive the Newton direction for the system
⎡

⎣
I + λ∇2

x f (x ) 0 ∇x f (x )
0 1 −1

∇x f (x )T −1 0

⎤

⎦∆ = −r(x , t ,λ)

The Hessian ∇2
x f (x ) is often structured and can be inversed in O(n)
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Epigraph
Projection: Implicit
dual
Newton

When the domain of the atom is constrained, e.g.,

f (x ) = −
∑

i

(xi), ⇒ xi > 0,

primal-dual Newton method cannot be applied directly

However, we can write dual function in terms of proximal operator

D(λ) ≡
x ,t

L(x , t ,λ)

= L( λf (v),λ+ s ,λ)

Because λf (v) is a function of λ, we can apply implicit function
theorem to obtain dD(λ)

dλ and d2D(λ)
dλ2
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Epigraph
Projection: Sum
of
Max
Method
When the atom is piece-wise linear, e.g.,

f (x ) =
∑

i

|xi |,

the dual epigraph problem is also piece-wise linear, with at most O(n)
knots

knot

We can enumerate all the knot point and perform quick-select on the
gradient direction to find the optimal λ 24



Contribution
Summary

In conclusion,

we present an algorithm that can solve any DCP using only proximal
and epigraph projection operators

We designed a wide class of epigraph projection algortihms that
enables the proximal method to work in general DCP problems
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The
Epsilon
Framework

All the algorithms and experiments are integrated in the
Epsilon framework (Epigraph Proximal Solver),

which is downloadable at
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http://epopt.io


Experiment: time
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Experiment: Time
vs
Objective
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Experiment: Scaling
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Expriment: Compared
with
Specialized
Solvers
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Conclusion

Solving problems without conic transform
- By proximal operators and epigraph projections

Collection of epigraph projection algorithms
- Covers most DCP atoms

Experiments
- Order of magnitude faster than other solver

Full framework available at
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