
The Mixing method for Maxcut-SDP problem

Po-Wei Wang
Machine Learning Department

Carnegie-Mellon University
Pittsburgh, PA 15213
poweiw@cs.cmu.edu

J. Zico Kolter
Computer Science Department

Carnegie-Mellon University
Pittsburgh, PA 15213
zkolter@cs.cmu.edu

Abstract

We propose a fast, simple low-rank method for solving the SDP relaxation of
Maxcut problem, in which the complexity per iteration is linear in the number of
edges. Experiments suggest that it always converges to global optima and is orders
of magnitude faster than existing state-of-the-art low-rank methods. Specially, the
proposed method is capable of solving problems involving millions of vertices.

1 Introduction

Although solving nonconvex optimization problems can be NP-hard, several such problems have
well-known approximate solutions. One of the canonical examples of such problem is Maxcut
problem, the task of finding a graph cut that maximizes the weight of the cut. There is a well-known
semidefinite relaxation of the Maxcut problem, which requires solving the semidefinite program

minimize
X�0, xii=1

〈C,X〉, (MAXCUT–SDP)

where C is the adjacency matrix of the graph. [GW95] showed that the solution of the above problem
gives a strong (0.878) approximation for the Maxcut problem by randomized rounding.

However, solving this SDP can still be impractical. For example, typical interior point solvers
[e.g. BY05] for SDP problems require O(n3) time per iteration, plus O(n2) memory for storing X .
Fortunately, [Bar95] and [Pat98] show that there is always a low-rank solution for MAXCUT–SDP.
[BM03] use this fact to create a low-rank method for general SDP problems, solving the corresponding
MAXCUT–VEC of sufficient rank with augmented Lagrangian method. In this paper, we proposed a
simple algorithm called MIXING that further exploits this low-rank structure. The MIXING method
is strictly decreasing and its steps are feasible in contrast to [BM03]. Experiments suggest that it
typically converges to global optima in practice, and is orders of magnitude faster than existing
state-of-the-art methods.

2 The Mixing Method

By factorizing X = V TV for some V ∈ Rk×n, we see that the Maxcut SDP is equivalent to the
(nonconvex) optimization problem

minimize
V ∈Rk×n, ‖vi‖=1

〈C, V >V 〉, (MAXCUT–VEC)

Our MIXING method is simply the following. Observe that, if we minimize one vi (column of V ) at
a time for MAXCUT–VEC, there is a closed-form solution

vnext
i = normalize

−∑
j

cijvj

 . (1)

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



Thus, we can simply cycle through all i and update each vi sequentially using (1). The algorithm is
strictly decreasing, feasible, and the complexity per iteration is O(#edges · k).

Despite its simplicity, this algorithm substantially outperforms all alternative approaches for solving
the Maxcut SDP that we can find in the literature. Although the current best known bound for k is
simply k = n (rendering the algorithm less practical), in practice much lower values still converge
to global optima (as measured by globally convergent methods). Further, we prove the following
theoretical property.
Theorem 1. The MIXING method converges to a local optimum of the MAXCUT–VEC problem.
Further, for sufficiently large k and good initialization (namely, where the relaxed objective is lower
that the non-relaxed optimal Maxcut solution), MIXING converges to a global optimum.

2.1 Proof of Theorem 1

We first formalize the MIXING method before starting the proof. Let L be the lower triangular part
of C so that C = L + LT (because Cii = 0). Then the update of MIXING can be written as

− V rL = V r+1
(
LT + diag(yr+1)

)
, (2)

in which V r is the solution at the r-th iteration and

yr+1
i = ‖

∑
j<i

cijv
r+1
j +

∑
j>i

cijv
r
j‖. (3)

This formulation is similar to the analysis of block coordinate descent in [SH15]. Specifically, note
that yr+1 is not a constant and thus the evolution is not linear. Further, we show that our method
admit sufficient decrease for every cycle.
Lemma 2. The function difference for each cycle of the MIXING method is

〈C,Xr〉 − 〈C,Xr+1〉 =

n∑
i=1

yr+1
i ‖vri − vr+1

i ‖2. (4)

Proof. Left-multiply V r> and V r+1> to (2) and take the difference, we have

XrL−Xr+1L = V r+1>V rL− V r>V r+1L> + (Xr+1 − V r>V r+1) diag(yr+1). (5)

Because

tr(XL) =
1

2
tr(XC) and tr(V r+1>V rL) = tr(V r>V r+1L>),

taking trace on (5) gives
1

2
(tr(CXr)− tr(CXr+1)) = 0 +

∑
i

yr+1
i (1− vr>i vr+1

i ). (6)

The result follows from 1− vr>i vr+1
i = 1

2‖v
r
i − vr+1

i ‖2.

Lemma 2 means that the MIXING method admits a unique limit point. Let the limit be V̄ and the
corresponding limit of yr be ȳ. Then V̄ being a fix point of (2) implies

V̄ (C + diag(ȳ)) = 0, (7)

which also means

X̄(C + diag(ȳ)) = 0 (8)

if we let X̄ = V̄ >V̄ . Remember that the KKT condition of MAXCUT–SDP is

X∗ � 0, X∗ii = 1 prime feasibility (9)
X∗(C + diag(y∗)) = 0 complementary slackness (10)
C + diag(y∗) � 0 dual feasibility. (11)

Thus, together with the feasibility of the MIXING method, the limit V̄ satisfies (9) and (10). Now
we show the local convergence to global optima by proving (11) also holds if we start from a
neighborhood of the optima.

2



Theorem 3. The MIXING method converges to global optima when the limit X̄ satisfies

min
u∈{−1,1}n

u>Cu ≥ 〈C, X̄〉. (12)

Proof. By condition (12), we have

u>Cu ≥ 〈C, X̄〉, ∀u ∈ {−1, 1}n. (13)

Further, property (8) for the limit point implies

〈C, X̄〉 = −1>ȳ. (14)

Together with

1>ȳ = u′ diag(ȳ)u, ∀u ∈ {−1, 1}n, (15)

we have

u>(C + diag(ȳ))u ≥ 0, ∀u ∈ {−1, 1}n. (16)

This means that C + diag(ȳ) � 0 and the KKT condition holds.

Because the MIXING method is strictly decreasing, Theorem 3 implies that if the initial V 0 satisfies

min
u∈{−1,1}n

u>Cu ≥ 〈C, V 0>V 0〉, (17)

the method converges to global optima. However, experiments suggest that the MIXING method
converges globally without such assumption. It remains an open problem to prove the global
convergence for the method.

3 Experiments

In this section we compare the proposed MIXING method with the following algorithms: 1) DSDP
5.8 [BY05], which implements an interior point method with dual scaling. It is very mature and
supports sparse matrices. We report its primal objective and measure only the solving time in the
comparison. 2) SDPLR 1.03-beta [BM03], which implements a low-rank augmented Lagrangian
method with L-BFGS line search. Note that its solutions may be infeasible by the nature of Lagrangian
method. To make a fair comparison, we project the solution to feasible set and recalculate the function
value at every data point. We do not include this projection or function evaluation time in the running
time of the algorithm.

We evaluate the mixing methods on several datasets. Among them, the GSET [HR00] and SP3DL
[FPRR02] are the standard dataset for comparing Maxcut algorithms. We also consider larger dataset
in the SNAP collection [LK14] downloaded from University of Florida sparse matrix collection
[DH11]. In particular, we compare the MIXING method with SDPLR on ca-HepPh [LKF07] and
email-Enron [LKF05]. To test the limit of our proposed method, we also try the MIXING method on
the roadNet.CA dataset [LLDM09], which consists of near 2 million vertices and 5.5 million edges.
Also, for theoretical purpose, we test these methods on noisy hypercube and noisy sphere, because
they are known to be hard [KV15] for the MAXCUT–SDP problem. In particular, we create the noisy
hypercube dataset by connecting all the edges between x, y ∈ {−1, 1}10 satisfying x>y ≤ 0.7 · 10,
and the noisy sphere by sampling 4 ·210 samples uniformly from the unit sphere and connecting edges
the same way as the noisy hypercube. We set k =

√
n on all the experiments except for roadNet.CA,

which we set k = 500 to avoid memory issues.

The experiments (Figure 1) indicate that the MIXING method is in different order of complexity
compared to DSDP, and is consistently orders of magnitude faster than SDPLR. Note that DSDP is
excluded from the SNAP experiments because it is too slow for comparison, and only the MIXING
method survives in the roadNet.CA dataset due to the memory consumption.

3



(a) g3.rud

10-3 10-2 10-1 100

Running time (seconds)

10-6

10-3

100

103

o
b
je

ct
iv

e
 d

if
fe

re
n
ce

(n=800 edges=19176)

mix

sdplr

dsdp

(b) g8.rud

10-3 10-2 10-1 100

Running time (seconds)

10-4

10-1

102

105

o
b
je

ct
iv

e
 d

if
fe

re
n
ce

(n=800 edges=19176)

mix

sdplr

dsdp

(c) g27.rud

10-2 10-1 100 101 102

Running time (seconds)

10-4

10-1

102

105

o
b
je

ct
iv

e
 d

if
fe

re
n
ce

(n=2000 edges=19990)

mix

sdplr

dsdp

(d) sg3dl148000.mc

10-3 10-2 10-1 100 101

Running time (seconds)

10-5

10-3

10-1

101

103

o
b
je

ct
iv

e
 d

if
fe

re
n
ce

(n=2744 edges=8232)

mix

sdplr

dsdp

(e) ca-HepPh

10-1 100 101 102 103

Running time (seconds)

10-7

10-4

10-1

102

o
b
je

ct
iv

e
 d

if
fe

re
n
ce

(n=12008 edges=237010)

mix

sdplr

(f) email-Enron

10-1 100 101 102 103

Running time (seconds)

10-7

10-4

10-1

102

o
b
je

ct
iv

e
 d

if
fe

re
n
ce

(n=36692 edges=367662)

mix

sdplr

(g) roadNet.CA

101 102 103 104

Running time (seconds)

101

102

103

104

105

o
b
je

ct
iv

e
 d

if
fe

re
n
ce

(n=1971281 edges=5533214)

mix

(h) hypercube.rud

10-1 100

Running time (seconds)

10-7

10-4

10-1

102

105

o
b
je

ct
iv

e
 d

if
fe

re
n
ce

(n=1024 edges=518656)

mix

sdplr

dsdp

(i) hypersphere.rud

100 101 102

Running time (seconds)

10-4

10-1

102

105

108

o
b
je

ct
iv

e
 d

if
fe

re
n
ce

(n=4096 edges=8386560)

mix

sdplr

dsdp

Figure 1: The log-log plots of function difference f(x) − f∗ v.s. running time in seconds. The
horizontal line marks 1e− 4 times the initial function difference of the MIXING method.

References
[Bar95] Alexander I. Barvinok. Problems of distance geometry and convex properties of quadratic

maps. Discrete & Computational Geometry, 13(2):189–202, 1995.

[BM03] Samuel Burer and Renato DC Monteiro. A nonlinear programming algorithm for
solving semidefinite programs via low-rank factorization. Mathematical Programming,
95(2):329–357, 2003.

[BY05] Steven J. Benson and Yinyu Ye. DSDP5: Software for semidefinite programming.
Technical Report ANL/MCS-P1289-0905, Mathematics and Computer Science Division,
Argonne National Laboratory, Argonne, IL, September 2005. Submitted to ACM
Transactions on Mathematical Software.

[DH11] Timothy A Davis and Yifan Hu. The university of florida sparse matrix collection. ACM
Transactions on Mathematical Software (TOMS), 38(1):1, 2011.

[FPRR02] Paola Festa, Panos M Pardalos, Mauricio GC Resende, and Celso C Ribeiro. Randomized
heuristics for the max-cut problem. Optimization methods and software, 17(6):1033–
1058, 2002.

[GW95] Michel X Goemans and David P Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. Journal of
the ACM (JACM), 42(6):1115–1145, 1995.

4



[HR00] Christoph Helmberg and Franz Rendl. A spectral bundle method for semidefinite
programming. SIAM Journal on Optimization, 10(3):673–696, 2000.

[KV15] Subhash A Khot and Nisheeth K Vishnoi. The unique games conjecture, integrality gap
for cut problems and embeddability of negative-type metrics into ` 1. Journal of the
ACM (JACM), 62(1):8, 2015.

[LK14] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, June 2014.

[LKF05] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: densification
laws, shrinking diameters and possible explanations. In Proceedings of the eleventh
ACM SIGKDD international conference on Knowledge discovery in data mining, pages
177–187. ACM, 2005.

[LKF07] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Densification
and shrinking diameters. ACM Transactions on Knowledge Discovery from Data (TKDD),
1(1):2, 2007.

[LLDM09] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. Community
structure in large networks: Natural cluster sizes and the absence of large well-defined
clusters. Internet Mathematics, 6(1):29–123, 2009.

[Pat98] Gábor Pataki. On the rank of extreme matrices in semidefinite programs and the
multiplicity of optimal eigenvalues. Mathematics of operations research, 23(2):339–358,
1998.

[SH15] Ruoyu Sun and Mingyi Hong. Improved iteration complexity bounds of cyclic block
coordinate descent for convex problems. In Advances in Neural Information Processing
Systems, pages 1306–1314, 2015.

5

http://snap.stanford.edu/data

	Introduction
	The Mixing Method
	Proof of Theorem 1

	Experiments

