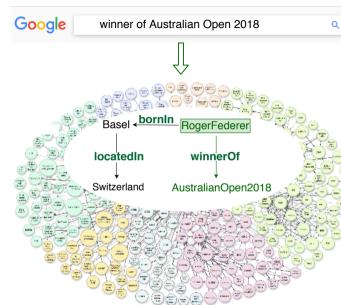
Differentiable learning of numerical rules in knowledge graphs

Po-Wei Wang^{1,2}, Daria Stepanova¹, Csaba Domokos¹ and Zico Kolter^{1,2}

¹Bosch Center for Artificial Intelligence ²Carnegie Mellon University

ICLR'20



Roger Federer

<

Tennis player

rogerfederer.com

Roger Federer is a Swiss professional tennis player who is currently ranked world No. 10 by the Association of Tennis Professionals. Many players and analysts have called him the greatest tennis player of all time. Wikipedia

Born: August 8, 1981 (age 35 years), Basel, Switzerland

Height: 1.85 m

Weight: 85 kg

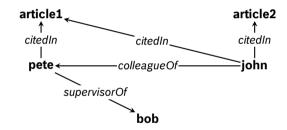
Spouse: Mirka Federer (m. 2009)

Children: Lenny Federer, Myla Rose Federer, Charlene Riva Federer, Leo Federer

2 Public | Po-Wei Wang, Daria Stepanova, Csaba Domokos, Zico Kotter | 2020-04-08 © Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial propert

Knowledge graph = Multi-graph with typed edges

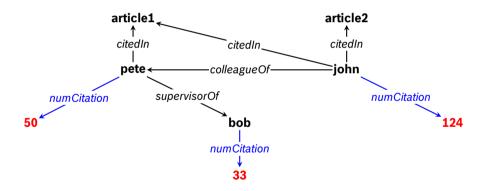
Entities (nodes): **article1**, **article2**, **pete**, **john**, **bob** Facts (edges): citedIn(pete, article1), supervisorOf(pete, john)



Public | Po-Wei Wang, Daria Stepanova, Csaba Domokos, Zico Kolter | 2020-04-08

Knowledge graph = Multi-graph with typed edges

Entities (nodes):article1, article2, pete, john, bobFacts (edges):citedIn(pete, article1), supervisorOf(pete, john)Numerical Facts:numCitation(pete, 50), numCitation(john, 124)



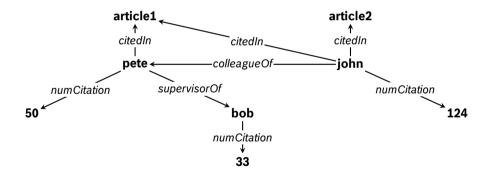
Public | Po-Wei Wang, Daria Stepanova, Csaba Domokos, Zico Kolter | 2020-04-08

Rule: pattern matching along a certain path

Public | Po-Wei Wang, Daria Stepanova, Csaba Domokos, Zico Kolter | 2020-04-08

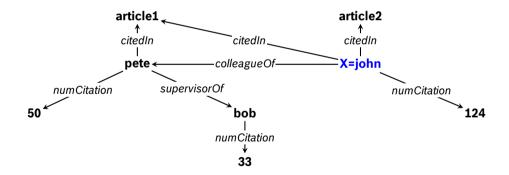
Rule: pattern matching along a certain path

influences(X,Z)←colleagueOf(X,Y) ∧ supervisorOf(Y,Z)



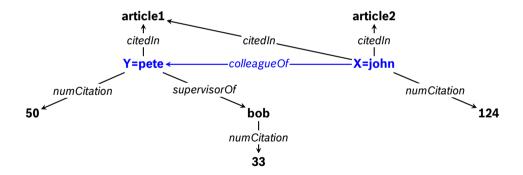
Rule: pattern matching along a certain path

influences(X,Z)←colleagueOf(X,Y) ∧ supervisorOf(Y,Z)



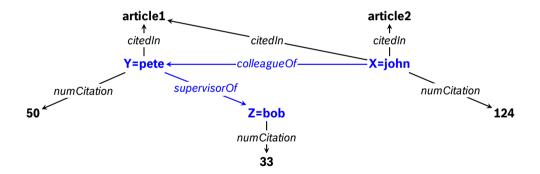
Rule: pattern matching along a certain path

influences(X,Z)←colleagueOf(X,Y) ∧ supervisorOf(Y,Z)



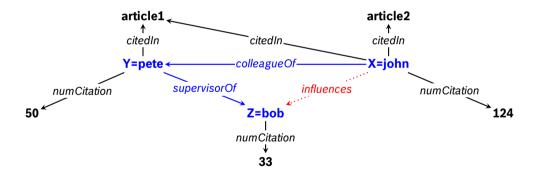
Rule: pattern matching along a certain path

influences(X,Z)←colleagueOf(X,Y) ∧ supervisorOf(Y,Z)



Rule: pattern matching along a certain path

influences(X,Z)←colleagueOf(X,Y) ∧ supervisorOf(Y,Z)

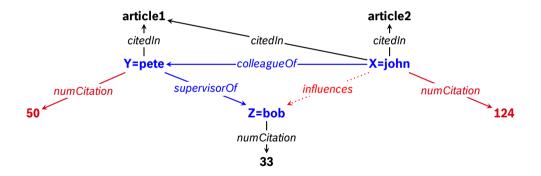


Rule: pattern matching along a certain path Numerical rule: Comparison / classification operator using features along the path

influences(X, Z) (-colleagueOf(X, Y)

 supervisorOf(Y, Z)

 (X.numCitation > Y.numCitation)



NeuralLP: differentiable learning framework via (sparse) matrix-vector multiplication

Public | Po-Wei Wang, Daria Stepanova, Csaba Domokos, Zico Kolter | 2020-04-08

NeuralLP: differentiable learning framework via (sparse) matrix-vector multiplication

Adj matrix
$$(M_{colleagueOf})_{y,x} = \begin{cases} 1 & \text{if colleagueOf}(\mathbf{x}, \mathbf{y}) \\ 0 & \text{otherwise} \end{cases}$$

Public | Po-Wei Wang, Daria Stepanova, Csaba Domokos, Zico Kolter | 2020-04-08

NeuralLP: differentiable learning framework via (sparse) matrix-vector multiplication

Adj matrix
$$(M_{colleagueOf})_{y,x} = \begin{cases} 1 & \text{if colleagueOf} \\ 0 & \text{otherwise} \end{cases}$$

Apply rules (path counting) by sparse matrix-vector multiplication

influences(X, Z) \leftarrow colleagueOf(X, Y) \land supervisorOf(Y, Z) influences(john, Z) = one_hot(john) $M_{colleagueOf}^{T}$ $M_{supervisorOf}^{T}$

NeuralLP: differentiable learning framework via (sparse) matrix-vector multiplication

Adj matrix
$$(M_{colleagueOf})_{y,x} = \begin{cases} 1 & \text{if colleagueOf} \\ 0 & \text{otherwise} \end{cases}$$

Apply rules (path counting) by sparse matrix-vector multiplication

influences(X, Z) \leftarrow colleagueOf(X, Y) \land supervisorOf(Y, Z) influences(john, Z) = one_hot(john) $M_{colleagueOf}^{T}$ $M_{supervisorOf}^{T}$

For numerical rules, we can similarly create the comparison matrix

Adj matrix
$$(M_{cmp})_{y,x} = \begin{cases} 1 & \text{if } \mathbf{x}.\text{numCitation} < \mathbf{y}.\text{numCitation} \\ 0 & \text{otherwise} \end{cases}$$

Public | Po-Wei Wang, Daria Stepanova, Csaba Domokos, Zico Kolter | 2020-04-08

NeuralLP: differentiable learning framework via (sparse) matrix-vector multiplication

Adj matrix
$$(M_{colleagueOf})_{y,x} = \begin{cases} 1 & \text{if colleagueOf} \\ 0 & \text{otherwise} \end{cases}$$

Apply rules (path counting) by sparse matrix-vector multiplication

influences(X, Z) \leftarrow colleagueOf(X, Y) \land supervisorOf(Y, Z) influences(john, Z) = one_hot(john) $M_{colleagueOf}^{T}$ $M_{supervisorOf}^{T}$

For numerical rules, we can similarly create the comparison matrix

Adj matrix
$$(M_{cmp})_{y,x} = \begin{cases} 1 & \text{if } \mathbf{x}.\text{numCitation} < \mathbf{y}.\text{numCitation} \\ 0 & \text{otherwise} \end{cases}$$

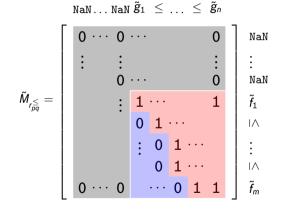
Problem: may be a dense matrix \Rightarrow cannot be materialized on GPU

Public | Po-Wei Wang, Daria Stepanova, Csaba Domokos, Zico Kolter | 2020-04-08

Trick: assume values are sorted by the permutation matrices P_p and P_q , resp.

Public | Po-Wei Wang, Daria Stepanova, Csaba Domokos, Zico Kolter | 2020-04-08

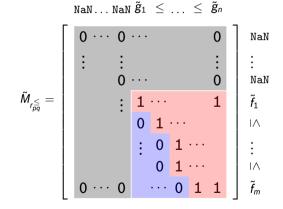
Trick: assume values are sorted by the permutation matrices P_p and P_q , resp.



Monotonic borderline:

Public | Po-Wei Wang, Daria Stepanova, Csaba Domokos, Zico Kolter | 2020-04-08

Trick: assume values are sorted by the permutation matrices P_p and P_q , resp.



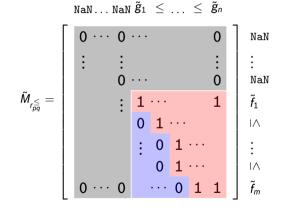
Monotonic borderline:

 γ_i : position of the first non-zero element in the *i*th row

$$(ilde{\mathcal{M}}_{r^{\leq}_{
ho q}} oldsymbol{v})_i = \sum_{\gamma_i \leq j \leq |\mathcal{C}|} oldsymbol{v}_j = ext{cumsum}(oldsymbol{v})_{\gamma_i}$$

Public | Po-Wei Wang, Daria Stepanova, Csaba Domokos, Zico Kolter | 2020-04-08

Trick: assume values are sorted by the permutation matrices P_p and P_q , resp.



Monotonic borderline:

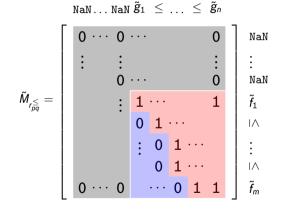
 γ_i : position of the first non-zero element in the *i*th row

$$(ilde{\mathcal{M}}_{r^{\leq}_{
ho q}}oldsymbol{v})_i = \sum_{\gamma_i \leq j \leq |\mathcal{C}|}oldsymbol{v}_j = ext{cumsum}(oldsymbol{v})_{\gamma_i}$$

 $Mv = P_q^{ op} \operatorname{cumsum}(P_p v)_{\gamma}$

Public | Po-Wei Wang, Daria Stepanova, Csaba Domokos, Zico Kolter | 2020-04-08

Trick: assume values are sorted by the permutation matrices P_p and P_q , resp.



Monotonic borderline:

 γ_i : position of the first non-zero element in the *i*th row

$$(ilde{\mathcal{M}}_{r_{\overline{
hoq}}^{\leq}}oldsymbol{v})_i = \sum_{\gamma_i \leq j \leq |\mathcal{C}|}oldsymbol{v}_j = ext{cumsum}(oldsymbol{v})_{\gamma_i}$$

 $Mv = P_q^{ op} \operatorname{cumsum}(P_p v)_\gamma$ Complexity: $O(n^2) \Rightarrow O(n \log n)$

Public | Po-Wei Wang, Daria Stepanova, Csaba Domokos, Zico Kolter | 2020-04-08

Comparison to state-of-the-art rule learning methods

Hit@10: the number of correct head terms predicted out of the top 10 predictions

Dataset	Synthetic1	Synthetic2	FB15K-237-num	DBP15K-num
AnyBurl	0.031	0.685	0.426	0.522
NeuralLP	0.240	0.295	0.362	0.436
ours	1.000	1.000	0.415	0.682

Learning (numerical) rules in KGs by path matching with matrix multiplications

Public | Po-Wei Wang, Daria Stepanova, Csaba Domokos, Zico Kolter | 2020-04-08

Learning (numerical) rules in KGs by path matching with matrix multiplications

Extension of the NeuralLP framework with

- numerical comparison
- classification (in paper)
- negation (in paper)

Learning (numerical) rules in KGs by path matching with matrix multiplications

Extension of the NeuralLP framework with

- numerical comparison
- classification (in paper)
- negation (in paper)

Improvement over the state-of-the-art rule learning methods

Learning (numerical) rules in KGs by path matching with matrix multiplications

Extension of the NeuralLP framework with

- numerical comparison
- classification (in paper)
- negation (in paper)

Improvement over the state-of-the-art rule learning methods

Thank you for your attention!

Public | Po-Wei Wang, Daria Stepanova, Csaba Domokos, Zico Kolter | 2020-04-08

