Differentiable learning of numerical rules in knowledge graphs

Po-Wei Wang ${ }^{1,2}$, Daria Stepanova ${ }^{1}$, Csaba Domokos ${ }^{1}$ and Zico Kolter ${ }^{1,2}$
${ }^{1}$ Bosch Center for Artificial Intelligence ${ }^{2}$ Carnegie Mellon University

ICLR'20

Knowledge graph = Multi-graph with typed edges

Entities (nodes): article1, article2, pete, john, bob Facts (edges): citedln(pete, article1), supervisorOf(pete, john)

Knowledge graph = Multi-graph with typed edges

Entities (nodes): article1, article2, pete, john, bob
Facts (edges): citedln(pete, article1), supervisorOf(pete, john)
Numerical Facts: numCitation(pete, 50), numCitation(john, 124)

Goal: Learn (numerical) rules from KG and complete missing edges

Rule: pattern matching along a certain path

Goal: Learn (numerical) rules from KG and complete missing edges

Rule: pattern matching along a certain path
influences $(\mathbf{X}, \mathbf{Z}) \leftarrow$ colleagueOf $(\mathbf{X}, \mathbf{Y}) \wedge \operatorname{supervisorOf(\mathbf {Y},\mathbf {Z})}$

Goal: Learn (numerical) rules from KG and complete missing edges

Rule: pattern matching along a certain path
influences $(\mathbf{X}, \mathbf{Z}) \leftarrow$ colleagueOf($\mathbf{X}, \mathbf{Y}) \wedge$ supervisorOf($\mathbf{Y}, \mathbf{Z})$

Goal: Learn (numerical) rules from KG and complete missing edges

Rule: pattern matching along a certain path
influences $(\mathbf{X}, \mathbf{Z}) \leftarrow$ colleague $\mathcal{f}(\mathbf{X}, \mathbf{Y}) \wedge \operatorname{supervisorOf(\mathbf {Y},\mathbf {Z})}$

Goal: Learn (numerical) rules from KG and complete missing edges

Rule: pattern matching along a certain path
influences $(\mathbf{X}, \mathbf{Z}) \leftarrow$ colleague $\mathcal{f}(\mathbf{X}, \mathbf{Y}) \wedge$ supervisorOf($\mathbf{Y}, \mathbf{Z})$

Goal: Learn (numerical) rules from KG and complete missing edges

Rule: pattern matching along a certain path
influences $(\mathbf{X}, \mathbf{Z}) \leftarrow$ colleague $\mathcal{f}(\mathbf{X}, \mathbf{Y}) \wedge$ supervisorOf($\mathbf{Y}, \mathbf{Z})$

Goal: Learn (numerical) rules from KG and complete missing edges

Rule: pattern matching along a certain path
Numerical rule: Comparison / classification operator using features along the path influences $(\mathbf{X}, \mathbf{Z}) \leftarrow \operatorname{colleagueOf}(\mathbf{X}, \mathbf{Y}) \wedge \operatorname{supervisorOf}(\mathbf{Y}, \mathbf{Z}) \wedge \underline{(\mathbf{X} . \text { numCitation }>} \mathbf{Y}$.numCitation)

Problem: Implementing the (numerical) rule matching

NeuralLP: differentiable learning framework via (sparse) matrix-vector multiplication

Problem: Implementing the (numerical) rule matching

NeuralLP: differentiable learning framework via (sparse) matrix-vector multiplication

$$
\text { Adj matrix }\left(M_{\text {colleagueOf }}\right)_{y, x}= \begin{cases}1 & \text { if colleagueOf }(\mathbf{x}, \mathbf{y}) \\ 0 & \text { otherwise }\end{cases}
$$

Problem: Implementing the (numerical) rule matching

NeuralLP: differentiable learning framework via (sparse) matrix-vector multiplication

$$
\text { Adj matrix }\left(M_{\text {colleague Of }}\right)_{y, x}= \begin{cases}1 & \text { if colleagueOf }(\mathbf{x}, \mathbf{y}) \\ 0 & \text { otherwise }\end{cases}
$$

Apply rules (path counting) by sparse matrix-vector multiplication

$$
\begin{aligned}
& \text { influences }(\mathbf{X}, \mathbf{Z}) \leftarrow \text { colleagueOf }(\mathbf{X}, \mathbf{Y}) \quad \wedge \text { supervisorOf }(\mathbf{Y}, \mathbf{Z}) \\
& \text { influences }(\text { john, } \mathbf{Z})=\text { one_hot }(\mathbf{j o h n}) \quad M_{\text {colleagueOf }}^{T} \quad M_{\text {supervisorof }}^{T}
\end{aligned}
$$

Problem: Implementing the (numerical) rule matching

NeuralLP: differentiable learning framework via (sparse) matrix-vector multiplication

$$
\text { Adj matrix }\left(M_{\text {colleagueof }}\right)_{y, x}= \begin{cases}1 & \text { if colleague } O f(\mathbf{x}, \mathbf{y}) \\ 0 & \text { otherwise }\end{cases}
$$

Apply rules (path counting) by sparse matrix-vector multiplication

$$
\begin{aligned}
& \text { influences }(\mathbf{X}, \mathbf{Z}) \leftarrow \text { colleagueOf }(\mathbf{X}, \mathbf{Y}) \quad \wedge \text { supervisorOf }(\mathbf{Y}, \mathbf{Z}) \\
& \text { influences }(\text { john, } \mathbf{Z})=\text { one_hot }(\mathbf{j o h n}) \quad M_{\text {colleagueOf }}^{T} \quad M_{\text {supervisorof }}^{T}
\end{aligned}
$$

For numerical rules, we can similarly create the comparison matrix

$$
\text { Adj matrix }\left(M_{c m p}\right)_{y, x}= \begin{cases}1 & \text { if } \mathbf{x . n u m C i t a t i o n ~}<\mathbf{y} . \text { numCitation } \\ 0 & \text { otherwise }\end{cases}
$$

Problem: Implementing the (numerical) rule matching

NeuralLP: differentiable learning framework via (sparse) matrix-vector multiplication

$$
\text { Adj matrix }\left(M_{\text {colleagueof }}\right)_{y, x}= \begin{cases}1 & \text { if colleague Of }(\mathbf{x}, \mathbf{y}) \\ 0 & \text { otherwise }\end{cases}
$$

Apply rules (path counting) by sparse matrix-vector multiplication

$$
\begin{aligned}
& \text { influences }(\mathbf{X}, \mathbf{Z}) \leftarrow \text { colleagueOf }(\mathbf{X}, \mathbf{Y}) \quad \wedge \text { supervisorOf }(\mathbf{Y}, \mathbf{Z}) \\
& \text { influences }(\text { john, } \mathbf{Z})=\text { one_hot }(\mathbf{j o h n}) \quad M_{\text {colleagueOf }}^{T} \quad M_{\text {supervisorof }}^{T}
\end{aligned}
$$

For numerical rules, we can similarly create the comparison matrix

$$
\text { Adj matrix }\left(M_{c m p}\right)_{y, x}= \begin{cases}1 & \text { if } \mathbf{x . n u m C i t a t i o n ~}<\mathbf{y} . \text { numCitation } \\ 0 & \text { otherwise }\end{cases}
$$

Problem: may be a dense matrix \Rightarrow cannot be materialized on GPU

Contribution: Efficient matrix-vector mult for numerical operators

Trick: assume values are sorted by the permutation matrices P_{p} and P_{q}, resp.

Contribution: Efficient matrix-vector mult for numerical operators

Trick: assume values are sorted by the permutation matrices P_{p} and P_{q}, resp.

$$
\text { NaN...NaN } \tilde{g}_{1} \leq \ldots \leq \tilde{g}_{n}
$$

$\tilde{M}_{r_{r \bar{q}}}=$	$\begin{array}{ccccc} 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ & 0 & \cdots & 0 \end{array}$		Na
			Na
		$\begin{array}{cccc} 1 & \cdots & & \\ 0 & 1 & \cdots & \\ \vdots & 0 & 1 & \cdots \\ & 0 & 1 & \cdots \end{array}$	1^ \vdots
	$0 \cdots 0$	$\cdots \cdots \begin{array}{llll}\cdots & 0 & 1 & 1\end{array}$	\tilde{f}_{m}

Monotonic borderline:

Contribution: Efficient matrix-vector mult for numerical operators

Trick: assume values are sorted by the permutation matrices P_{p} and P_{q}, resp.

$$
\text { NaN...NaN } \tilde{g}_{1} \leq \ldots \leq \tilde{g}_{n}
$$

Monotonic borderline:
γ_{i} : position of the first non-zero element in the $i^{\text {th }}$ row

$$
\left(\tilde{M}_{r_{p q}^{\leq}} v\right)_{i}=\sum_{\gamma_{i} \leq j \leq|\mathcal{C}|} v_{j}=\operatorname{cumsum}(v)_{\gamma_{i}}
$$

Contribution: Efficient matrix-vector mult for numerical operators

Trick: assume values are sorted by the permutation matrices P_{p} and P_{q}, resp.

$$
\text { NaN...NaN } \tilde{g}_{1} \leq \ldots \leq \tilde{g}_{n}
$$

$\tilde{M}_{r_{\bar{\circ}}}=$	$\begin{array}{lllll} 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ & 0 & \cdots & 0 \end{array}$	
		$\begin{array}{lll} 1 & \cdots & \\ 0 & 1 & \cdots \\ \vdots & 0 & 1 \end{array} \cdots$
	$0 \cdots 0$	$\cdots 01$

Monotonic borderline:
γ_{i} : position of the first non-zero element in the $i^{\text {th }}$ row

$$
\begin{gathered}
\left(\tilde{M}_{r_{\overline{p q}}^{\leq}} v\right)_{i}=\sum_{\gamma_{i} \leq j \leq|\mathcal{C}|} v_{j}=\operatorname{cumsum}(v)_{\gamma_{i}} \\
M v=P_{q}^{\top} \operatorname{cumsum}\left(P_{p} v\right)_{\gamma}
\end{gathered}
$$

Contribution: Efficient matrix-vector mult for numerical operators

Trick: assume values are sorted by the permutation matrices P_{p} and P_{q}, resp.

$$
\text { NaN...NaN } \tilde{g}_{1} \leq \ldots \leq \tilde{g}_{n}
$$

Monotonic borderline:
γ_{i} : position of the first non-zero element in the $i^{\text {th }}$ row

$$
\begin{gathered}
\left(\tilde{M}_{r_{\overline{p q}}} v\right)_{i}=\sum_{\gamma_{i} \leq j \leq|\mathcal{C}|} v_{j}=\operatorname{cumsum}(v)_{\gamma_{i}} \\
M v=P_{q}^{\top} \operatorname{cumsum}\left(P_{p} v\right)_{\gamma}
\end{gathered}
$$

Complexity: $O\left(n^{2}\right) \Rightarrow O(n \log n)$

Comparison to state-of-the-art rule learning methods

Hit@10: the number of correct head terms predicted out of the top 10 predictions

Dataset	Synthetic1	Synthetic2	FB15K-237-num	DBP15K-num
AnyBurl	0.031	0.685	$\mathbf{0 . 4 2 6}$	0.522
NeuralLP	0.240	0.295	0.362	0.436
ours	$\mathbf{1 . 0 0 0}$	$\mathbf{1 . 0 0 0}$	0.415	$\mathbf{0 . 6 8 2}$

Summary

Learning (numerical) rules in KGs by path matching with matrix multiplications

Summary

Learning (numerical) rules in KGs by path matching with matrix multiplications
Extension of the NeuralLP framework with

- numerical comparison
- classification (in paper)
- negation (in paper)

Summary

Learning (numerical) rules in KGs by path matching with matrix multiplications
Extension of the NeuralLP framework with

- numerical comparison
- classification (in paper)
- negation (in paper)

Improvement over the state-of-the-art rule learning methods

Summary

Learning (numerical) rules in KGs by path matching with matrix multiplications
Extension of the NeuralLP framework with

- numerical comparison
- classification (in paper)
- negation (in paper)

Improvement over the state-of-the-art rule learning methods

Thank you for your attention!

